Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats

J Gastroenterol. 2014 Mar;49(3):481-91. doi: 10.1007/s00535-013-0783-4. Epub 2013 Mar 12.

Abstract

Background: Dipeptidyl peptidase-4 inhibitor (DPP4-I) is clinically used as a new oral antidiabetic agent. Although DPP4 is reportedly associated with the progression of chronic liver diseases, the effect of DPP4-I on liver fibrosis development is still obscure. This study was designed to elucidate the effect of DPP4-I on liver fibrosis development in conjunction with the activated hepatic stellate cells (Ac-HSCs).

Methods: The antifibrotic effect of DPP4-I was assessed in vivo and in vitro using porcine serum-induced experimental liver fibrosis model. DPP4-I, sitagliptin, at a clinically comparable low dose was administered by gavage daily.

Results: DPP4-I significantly attenuated liver fibrosis development along with the suppression of hepatic transforming growth factor (TGF)-β1, total collagen, and tissue inhibitor of metalloproteinases-1 in a dose-dependent manner. These suppressive effects occurred almost concurrently with the attenuation of HSCs activation. Our in vitro studies showed that DPP4-I inhibited platelet-derived growth factor-BB-mediated proliferation of the Ac-HSCs as well as upregulation of TGF-β1 and α1(I)-procollagen at magnitudes similar to those of the in vivo studies. The inhibitory effects of DPP4-I against HSCs proliferation and fibrogenic gene expression are mediated through the inhibition of the phosphorylation of ERK1/2, p38 and Smad2/3, respectively.

Conclusions: DPP4-I markedly inhibits liver fibrosis development in rats via suppression of HSCs proliferation and collagen synthesis. These suppressive effects are associated with dephosphorylation of ERK1/2, p38 and Smad2/3 in the HSCs. Since DPP4-I is widely used in clinical practice, this drug may represent a potential new therapeutic strategy against liver fibrosis in the near future.

MeSH terms

  • Animals
  • Becaplermin
  • Cell Proliferation / drug effects
  • Collagen / metabolism
  • Dipeptidyl-Peptidase IV Inhibitors / administration & dosage
  • Dipeptidyl-Peptidase IV Inhibitors / pharmacology*
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation / drug effects
  • Hepatic Stellate Cells / drug effects*
  • Hepatic Stellate Cells / metabolism
  • Liver Cirrhosis, Experimental / pathology
  • Liver Cirrhosis, Experimental / prevention & control*
  • Male
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-sis / drug effects
  • Proto-Oncogene Proteins c-sis / metabolism
  • Pyrazines / administration & dosage
  • Pyrazines / pharmacology*
  • Rats
  • Rats, Inbred F344
  • Sitagliptin Phosphate
  • Swine
  • Transforming Growth Factor beta1 / drug effects
  • Transforming Growth Factor beta1 / metabolism
  • Triazoles / administration & dosage
  • Triazoles / pharmacology*

Substances

  • Dipeptidyl-Peptidase IV Inhibitors
  • Proto-Oncogene Proteins c-sis
  • Pyrazines
  • Transforming Growth Factor beta1
  • Triazoles
  • Becaplermin
  • Collagen
  • Sitagliptin Phosphate