Synchronization of chaos in fully developed turbulence

Phys Rev Lett. 2013 Feb 22;110(8):084102. doi: 10.1103/PhysRevLett.110.084102. Epub 2013 Feb 21.

Abstract

We investigate chaos synchronization of small-scale motions in the three-dimensional turbulent energy cascade, via pseudospectral simulations of the incompressible Navier-Stokes equations. The modes of the turbulent velocity field below about 20 Kolmogorov dissipation lengths are found to be slaved to the chaotic dynamics of larger-scale modes. The dynamics of all dissipation-range modes can be recovered to full numerical precision by solving small-scale dynamical equations with the given large-scale solution as an input, regardless of initial condition. The synchronization rate exponent scales with the Kolmogorov dissipation time scale, with possible weak corrections due to intermittency. Our results suggest that all sub-Kolmogorov length modes should be fully recoverable from numerical simulations with standard, Kolmogorov-length grid resolutions.