PM2.5 mass and species trends in Santiago, Chile, 1998 to 2010: the impact of fuel-related interventions and fuel sales

J Air Waste Manag Assoc. 2013 Feb;63(2):161-9. doi: 10.1080/10962247.2012.742027.

Abstract

Improving air quality in Santiago has been a high priority for the Chilean government. In this paper we examine trends of fine particulate matter (PM2.5) mass and species concentrations during the period 1998 to 2010 and explore the impact of fuel-related interventions and fuel sales on concentration changes. Smoothing spline functions were utilized to characterize and account for nonlinear relationships between pollutant concentrations and different parameters. Meteorology-adjusted PM2.5 concentrations were lower by 21.8 microg/m3 in 2010 compared to 1998. In this model, wind speed was the most important determinant of PM2.5 levels. A decrease in 24-hr average wind speed below 1.0 m/s was associated with a significant increase in daily PM2.5 levels, indicating a high sensitivity of PM2.5 concentrations to the accumulation of local emissions. The same regression model framework was applied to examine the trends of lead, bromine, and sulfur concentrations. Removal of lead and bromine from gasoline achieved dramatic decreases in their atmospheric concentrations. Nonetheless, both elements continue to persist, likely in the form of PbBrCl. The reduction of diesel sulfur content from 1,500 to 50 ppm corresponded to a 32% decrease in particulate sulfur levels. Lastly, a surge in PM2.5 was observed in 2005-2008. Further regression analyses suggested this was prompted by a rise in monthly petroleum-based fuel sales.

Implications: In this paper, we elucidate meteorology-adjusted trends of PM2.5 mass and species concentrations in Santiago and assess the efficacy of fuel-related interventions, such as the removal of lead from gasoline and reduction of sulfur content in diesel. In addition, we explore the impact of fuel sales on PM2.5 trends. Given that fuel consumption is likely to increase further in this rapidly growing city, understanding its impact on PM2.5 trends can inform future air quality control efforts in Santiago.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollution / prevention & control
  • Air Pollution / statistics & numerical data*
  • Chile
  • Lead / supply & distribution
  • Particulate Matter / analysis*
  • Petroleum / analysis
  • Petroleum / economics*
  • Regression Analysis
  • Sulfur
  • Vehicle Emissions / analysis*
  • Weather

Substances

  • Particulate Matter
  • Petroleum
  • Vehicle Emissions
  • Lead
  • Sulfur