Characterization of porin expression in Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae identifies isolates most susceptible to the combination of colistin and carbapenems

Antimicrob Agents Chemother. 2013 May;57(5):2147-53. doi: 10.1128/AAC.02411-12. Epub 2013 Mar 4.

Abstract

We characterized carbapenem resistance mechanisms among 12 Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (referred to here as KPC K. pneumoniae) clinical isolates and evaluated their effects on the activity of 2- and 3-drug combinations of colistin, doripenem, and ertapenem. All isolates were resistant to ertapenem and doripenem; 75% (9/12) were resistant to colistin. Isolates belonged to the ST258 clonal group and harbored blaKPC-2, blaSHV-12, and blaTEM-1. As determined by time-kill assays, doripenem (8 μg/ml) and ertapenem (2 μg/ml) were inactive against 92% (11/12) and 100% (12/12) of isolates, respectively. Colistin (2.5 μg/ml) exerted some activity (range, 0.39 to 2.5 log10) against 78% (7/9) of colistin-resistant isolates. Colistin-ertapenem, colistin-doripenem, and colistin-doripenem-ertapenem exhibited synergy against 42% (5/12), 50% (6/12), and 67% (8/12) of isolates, respectively. Expression of ompK35 and ompK36 porins correlated with each other (R(2) = 0.80). Levels of porin expression did not correlate with colistin-doripenem or colistin-ertapenem synergy. However, synergy with colistin-doripenem-ertapenem was more likely against isolates with high porin expression than those with low expression (100% [8/8] versus 0% [0/4]; P = 0.002). Moreover, bactericidal activity (area under the bacterial killing curve) against isolates with high porin expression was greater for colistin-doripenem-ertapenem than colistin-doripenem or colistin-ertapenem (P ≤ 0.049). In conclusion, colistin-carbapenem combinations may provide optimal activity against KPC K. pneumoniae, including colistin-resistant isolates. Screening for porin expression may identify isolates that are most likely to respond to a triple combination of colistin-doripenem-ertapenem. In the future, molecular characterization of KPC K. pneumoniae isolates may be a practical tool for identifying effective combination regimens.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Biomarkers, Pharmacological / metabolism
  • Carbapenems / pharmacology*
  • Colistin / pharmacology*
  • Drug Resistance, Bacterial / drug effects
  • Drug Synergism
  • Drug Therapy, Combination
  • Gene Expression Regulation, Bacterial*
  • Humans
  • Klebsiella Infections / microbiology
  • Klebsiella pneumoniae / drug effects*
  • Klebsiella pneumoniae / genetics
  • Klebsiella pneumoniae / isolation & purification
  • Klebsiella pneumoniae / metabolism
  • Microbial Sensitivity Tests
  • Porins / genetics*
  • Porins / metabolism
  • beta-Lactamases / genetics
  • beta-Lactamases / metabolism

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Biomarkers, Pharmacological
  • Carbapenems
  • Porins
  • beta-Lactamases
  • carbapenemase
  • Colistin