Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array

J Neurosci Methods. 2013 Apr 30;215(1):78-87. doi: 10.1016/j.jneumeth.2013.02.010. Epub 2013 Feb 28.

Abstract

Implantable microelectrodes provide a measure to electrically stimulate neurons in the brain and spinal cord and record their electrophysiological activity. A material with a high charge capacity such as activated or sputter-deposited iridium oxide film (AIROF or SIROF) is used as an interface. The Utah electrode array (UEA) uses SIROF for its interface material with neural tissue and oxygen plasma etching (OPE) with an aluminium foil mask to expose the active area, where the interface between the electrode and neural tissue is formed. However, deinsulation of Parylene-C using OPE has limitations, including the lack of uniformity in the exposed area and reproducibility. While the deinsulation of Parylene-C using an excimer laser is proven to be an alternative for overcoming the limitations, the iridium oxide (IrOx) suffers from fracture when high laser fluence (>1000 mJ/cm2) is used. Iridium (Ir), which has a much higher fracture resistance than IrOx, can be deposited before excimer laser deinsulation and then the exposed Ir film area can be activated by electrochemical treatment to acquire the AIROF. Characterisation of the laser-ablated Ir film and AIROF by surface analysis (X-ray photoelectron spectroscopy, scanning electron microscope, and atomic force microscope) and electrochemical analysis (electrochemical impedance spectroscopy, and cyclic voltammetry) shows that the damage on the Ir film induced by laser irradiation is significantly less than that on SIROF, and the AIROF has a high charge storage capacity. The results show the potential of the laser deinsulation technique for use in high performance AIROF-coated UEA fabrication.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Data Interpretation, Statistical
  • Electric Stimulation
  • Electrochemistry
  • Electrodes, Implanted*
  • Equipment Design
  • Iridium / chemistry*
  • Microelectrodes*
  • Microscopy, Atomic Force
  • Microscopy, Electron, Scanning
  • Neurons / physiology
  • Oxidation-Reduction
  • Photoelectron Spectroscopy
  • Polymers / chemistry*
  • Xylenes / chemistry*

Substances

  • Polymers
  • Xylenes
  • iridium oxide
  • parylene
  • Iridium