Infant baboons infected with respiratory syncytial virus develop clinical and pathological changes that parallel those of human infants

Am J Physiol Lung Cell Mol Physiol. 2013 Apr 15;304(8):L530-9. doi: 10.1152/ajplung.00173.2012. Epub 2013 Feb 15.

Abstract

Respiratory syncytial virus (RSV) infection of the lower respiratory tract is the leading cause of respiratory failure among infants in the United States of America and annually results in >300,000 deaths worldwide. Despite the importance of RSV, there is no licensed vaccine, and no specific form of therapy. This is largely due to the absence of an appropriate animal model for the evaluation of vaccines and therapeutic agents. We inoculated anesthetized infant (4 wk) baboons (Papio anubis) with a human strain of RSV intranasally or intratracheally. Baboons were monitored daily for clinical changes. Anesthetized baboons were intubated at various intervals, and bronchoalveolar lavage (BAL) was performed for viral culture and determination of leukocyte counts. Sham-infected baboons served as controls. Necropsies were performed on infected baboons on days 1, 3, 5, 8, or 13 after inoculation, with pathological analysis and immunohistochemical staining of lung tissues to detect RSV antigen. Infected baboons developed tachypnea and reduced oxygenation peaking from 4 to 8 days after infection and persisting for ≥14 days. Virus was recoverable in BAL fluid up to 8 days following infection. Necropsy revealed intense interstitial pneumonia, sloughing of the bronchiolar epithelium, and obstruction of the bronchiolar lumen with inflammatory cells and sloughed epithelial cells. RSV antigen was identified in bronchiolar and alveolar epithelium. We conclude that RSV-infected infant baboons develop clinical and pathological changes that parallel those observed in human infants with RSV infection. The infant baboon represents a much-needed model for studying the pathogenesis of RSV infection and evaluating antivirals and vaccines.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Viral / blood
  • Bronchoalveolar Lavage Fluid / virology
  • Disease Models, Animal
  • Humans
  • Infant
  • Lung / immunology
  • Lung / pathology
  • Monkey Diseases / pathology*
  • Monkey Diseases / physiopathology
  • Monkey Diseases / virology
  • Papio anubis / virology*
  • Respiratory Syncytial Virus Infections / pathology
  • Respiratory Syncytial Virus Infections / physiopathology
  • Respiratory Syncytial Virus Infections / veterinary*
  • Respiratory Syncytial Virus Infections / virology
  • Respiratory Syncytial Virus Vaccines / pharmacology
  • Respiratory Syncytial Viruses / immunology
  • Respiratory Syncytial Viruses / pathogenicity*
  • Species Specificity
  • Virus Replication

Substances

  • Antibodies, Viral
  • Respiratory Syncytial Virus Vaccines