High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth

Biomed Opt Express. 2013 Feb 1;4(2):245-59. doi: 10.1364/BOE.4.000245. Epub 2013 Jan 16.

Abstract

We report a newly developed high speed 1050nm spectral domain optical coherence tomography (SD-OCT) system for imaging posterior segment of human eye. The system is capable of an axial resolution at ~10 µm in air, an imaging depth of 6.1 mm in air, a system sensitivity fall-off at ~6 dB/3mm and an imaging speed of 120,000 A-scans per second. We experimentally demonstrate the system's capability to perform phase-resolved imaging of dynamic blood flow within retina, indicating high phase stability of the SDOCT system. Finally, we show an example that uses this newly developed system to image posterior segment of human eye with a large view of view (10 × 9 mm(2)), providing detailed visualization of microstructural features from anterior retina to posterior choroid. The demonstrated system parameters and imaging performances are comparable to those that a typical 1 µm swept source OCT would deliver for retinal imaging.

Keywords: (170.3880) Medical and biological imaging; (170.4460) Ophthalmic optics and devices; (170.4500) Optical coherence tomography.