Room temperature multiferroicity in Bi(4.2)K(0.8)Fe(2)O(9+δ)

Sci Rep. 2013:3:1245. doi: 10.1038/srep01245. Epub 2013 Feb 13.

Abstract

Magnetoelectric multiferroics are materials that have coupled magnetic and electric dipole orders, which can bring novel physical phenomena and offer possibilities for new device functions. In this report, single-crystalline Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts which are isostructural with the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+δ) are successfully grown by a hydrothermal method. The regular stacking of the rock salt slabs and the BiFeO(3)-like perovskite blocks along the c axis of the crystal makes the Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts have a natural magnetoelectric-dielectric superlattice structure. The most striking result is that the bulk material made of the Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts is of multiferroicity near room temperature accompanied with a structure anomaly. When an external magnetic field is applied, the electric polarization is greatly suppressed, and correspondingly, a large negative magnetocapacitance coefficient is observed around 270 K possibly due to the magnetoelectric coupling effect. Our result provides contributions to the development of single phase multiferroics.

Publication types

  • Research Support, Non-U.S. Gov't