Functional compartmentalisation of NF-kB-associated proteins in A431 cells

Cell Biol Int. 2013 Apr;37(4):387-96. doi: 10.1002/cbin.10053.

Abstract

NF-kB proteins belong to a family of ubiquitous transcription factors involved in a number of cellular responses. While the pathways of NF-kB activation and input into the regulation of gene activity have been comprehensively investigated, its cytoplasmic functions are poorly understood. In this study we addressed effects of the compartmentalisation of NF-kB proteins RelA/p65 and p50 in relation to the inhibitor IkB-a, using fibronectin (FN) and epidermal growth factor (EGF) for environmental stimulation of epidermoid carcinoma A431 cells. We thus assessed the presence of NF-kB family proteins in the cytosol, membrane, nuclear and cytoskeletal fractions with a special attention to the cytoskeletal fraction to define whether NFkB was active or not. Sub-cellular fractionation demonstrated that the proportion of RelA/p65 differed in diverse sub-cellular fractions, and that the cytoskeleton harboured about 7% thereof. Neither the nuclear nor the cytoskeleton fraction did contain IkB-a. The cytoskeleton binding of RelA/p65 and p50 was further confirmed by co-localisation and electron microscopy data. During 30-min EGF stimulation similar dynamics were found for RelA/p65 and IkB-a in the cytosol, RelA/p65 and p50 in the nucleus and p50 and IkB-a in the membrane. Furthermore, EGF stimulation for 30 min resulted in a threefold accumulation of RelA/p65 in cytoskeletal fraction. Our results suggest that nuclear-, membrane- and cytoskeleton-associated NF-kB are dynamic and comprise active pools, whereas the cytoplasmic is more constant and likely non-active due to the presence of IkB-a. Moreover, we discovered the existence of a dynamic, IkB-a-free pool of RelA/p65 associated with cytoskeletal fraction, what argues for a special regulatory role of the cytoskeleton in NF-kB stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Cell Line, Tumor
  • Cytoskeleton / metabolism
  • Epidermal Growth Factor / physiology
  • Fibronectins / metabolism
  • Humans
  • Protein Transport
  • Transcription Factor RelA / metabolism*

Substances

  • Actins
  • Fibronectins
  • RELA protein, human
  • Transcription Factor RelA
  • Epidermal Growth Factor