Reactivity studies of iridium pyridylidenes [Tp(Me2)Ir(C(6)H(5))(2)(C(CH)(3)C(R)NH] (R=H, Me, Ph)

Chemistry. 2013 Mar 18;19(12):4003-20. doi: 10.1002/chem.201203818. Epub 2013 Feb 11.

Abstract

The reactivity of a series of iridiumpyridylidene complexes with the formula [Tp(Me2) Ir(C6 H5 )2 (C(CH)3 C(R)NH] (1 a-1 c) towards a variety of substrates, from small molecules, such as H2 , O2 , carbon oxides, and formaldehyde, to alkenes and alkynes, is described. Most of the observed reactivity is best explained by invoking 16 e(-) unsaturated [Tp(Me2) Ir(phenyl)(pyridyl)] intermediates, which behave as internal frustrated Lewis pairs (FLPs). H2 is heterolytically split to give hydridepyridylidene complexes, whilst CO, CO2 , and H2 CO provide carbonyl, carbonate, and alkoxide species, respectively. Ethylene and propene form five-membered metallacycles with an IrCH2 CH(R)N (R=H, Me) motif, whereas, in contrast, acetylene affords four-membered iridacycles with the IrC(CH2 )N moiety. C6 H5 (CO)H and C6 H5 CCH react with formation of IrC6 H5 and IrCCPh bonds and the concomitant elimination of a molecule of pyridine and benzene, respectively. Finally the reactivity of compounds 1 a-1 c against O2 is described. Density functional theory calculations that provide theoretical support for these experimental observations are also reported.