Development of a compact wireless Laplacian electrode module for electromyograms and its human interface applications

Sensors (Basel). 2013 Feb 8;13(2):2368-83. doi: 10.3390/s130202368.

Abstract

In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrodes
  • Electromyography / instrumentation*
  • Fingers / physiology
  • Humans
  • Movement
  • Muscle Contraction / physiology
  • Muscle, Skeletal / physiology
  • Software
  • User-Computer Interface*
  • Wireless Technology / instrumentation*