Genome anchored QTLs for biomass productivity in hybrid Populus grown under contrasting environments

PLoS One. 2013;8(1):e54468. doi: 10.1371/journal.pone.0054468. Epub 2013 Jan 29.

Abstract

Traits related to biomass production were analyzed for the presence of quantitative trait loci (QTLs) in a Populus trichocarpa × P. deltoides F(2) population. A genetic linkage map composed of 841 SSR, AFLP, and RAPD markers and phenotypic data from 310 progeny were used to identify genomic regions harboring biomass QTLs. Twelve intervals were identified, of which BM-1, BM-2, and BM-7 were identified in all three years for both height and diameter. One putative QTL, BM-7, and one suggestive QTL exhibited significant evidence of over-dominance in all three years for both traits. Conversely, QTLs BM-4 and BM-6 exhibited evidence of under-dominance in both environments for height and diameter. Seven of the nine QTLs were successfully anchored, and QTL peak positions were estimated for each one on the P. trichocarpa genome assembly using flanking SSR markers with known physical positions. Of the 3,031 genes located in genome-anchored QTL intervals, 1,892 had PFAM annotations. Of these, 1,313, representing 255 unique annotations, had at least one duplicate copy in a QTL interval identified on a separate scaffold. This observation suggests that some QTLs identified in this study may have shared the same ancestral sequence prior to the salicoid genome duplication in Populus.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomass*
  • Crosses, Genetic*
  • Environment*
  • Gene-Environment Interaction
  • Genes, Plant
  • Genetic Linkage
  • Genome, Plant*
  • Lod Score
  • Phenotype
  • Physical Chromosome Mapping
  • Populus / genetics*
  • Populus / growth & development*
  • Quantitative Trait Loci*

Grants and funding

This research was supported, in part, by the Biomass Feedstock Development Program, United States Department of Energy; by the Office of Industrial Technology, Energy Efficiency Renewable Energy, United States Department of Energy; by the Office of Science, Biological, and Environmental Research, United States Department of Energy; by the Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area and by the BioEnergy Science Center. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.