Preparation and electrochemical performance of heteroatom-enriched electrospun carbon nanofibers from melamine formaldehyde resin

J Colloid Interface Sci. 2013 Apr 1:395:217-23. doi: 10.1016/j.jcis.2013.01.009. Epub 2013 Jan 12.

Abstract

Melamine formaldehyde resin was used to prepare heteroatom-enriched carbon nanofibers by electrospinning for the first time. The melamine formaldehyde resin-based carbon fibers without any activation treatment showed a moderate specific surface area ranging from 130 to 479 m2/g and rich surface functionalities (2.56-5.34 wt.% nitrogen and 10.39-11.2 9 wt.% oxygen). Both the specific surface area and surface functionality greatly depended on the carbonization temperature. The capacitive performance was evaluated in 6M KOH aqueous solution. The electrochemically active surface functionalities played an important role in improving the surface capacitance of the electrodes. The sample carbonized at 600°C showed the highest specific surface capacitance of 1.4 F/m2, which was attributed to the most active functionalities (10.69 wt.% of N and O). In addition, the sample carbonized at 750°C exhibited the highest specific capacitance of 206 F/g.