Robust inter-beat interval estimation in cardiac vibration signals

Physiol Meas. 2013 Feb;34(2):123-38. doi: 10.1088/0967-3334/34/2/123. Epub 2013 Jan 23.

Abstract

Reliable and accurate estimation of instantaneous frequencies of physiological rhythms, such as heart rate, is critical for many healthcare applications. Robust estimation is especially challenging when novel unobtrusive sensors are used for continuous health monitoring in uncontrolled environments, because these sensors can create significant amounts of potentially unreliable data. We propose a new flexible algorithm for the robust estimation of local (beat-to-beat) intervals from cardiac vibration signals, specifically ballistocardiograms (BCGs), recorded by an unobtrusive bed-mounted sensor. This sensor allows the measurement of motions of the body which are caused by cardiac activity. Our method requires neither a training phase nor any prior knowledge about the morphology of the heart beats in the analyzed waveforms. Instead, three short-time estimators are combined using a Bayesian approach to continuously estimate the inter-beat intervals. We have validated our method on over-night BCG recordings from 33 subjects (8 normal, 25 insomniacs). On this dataset, containing approximately one million heart beats, our method achieved a mean beat-to-beat interval error of 0.78% with a coverage of 72.69%.

MeSH terms

  • Adult
  • Algorithms*
  • Ballistocardiography / methods*
  • Data Interpretation, Statistical
  • Diagnosis, Computer-Assisted / methods*
  • Female
  • Heart / physiology*
  • Heart Rate / physiology*
  • Humans
  • Male
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Vibration