Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering

Anal Bioanal Chem. 2013 Apr;405(11):3637-58. doi: 10.1007/s00216-012-6627-x. Epub 2013 Jan 18.

Abstract

The flavocytochrome cellobiose dehydrogenase (CDH) is a versatile biorecognition element capable of detecting carbohydrates as well as quinones and catecholamines. In addition, it can be used as an anode biocatalyst for enzymatic biofuel cells to power miniaturised sensor-transmitter systems. Various electrode materials and designs have been tested in the past decade to utilize and enhance the direct electron transfer (DET) from the enzyme to the electrode. Additionally, mediated electron transfer (MET) approaches via soluble redox mediators and redox polymers have been pursued. Biosensors for cellobiose, lactose and glucose determination are based on CDH from different fungal producers, which show differences with respect to substrate specificity, pH optima, DET efficiency and surface binding affinity. Biosensors for the detection of quinones and catecholamines can use carbohydrates for analyte regeneration and signal amplification. This review discusses different approaches to enhance the sensitivity and selectivity of CDH-based biosensors, which focus on (1) more efficient DET on chemically modified or nanostructured electrodes, (2) the synthesis of custom-made redox polymers for higher MET currents and (3) the engineering of enzymes and reaction pathways. Combination of these strategies will enable the design of sensitive and selective CDH-based biosensors with reduced electrode size for the detection of analytes in continuous on-site and point-of-care applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bioelectric Energy Sources
  • Biosensing Techniques / instrumentation*
  • Biosensing Techniques / methods
  • Carbohydrate Dehydrogenases / chemistry
  • Carbohydrate Dehydrogenases / metabolism*
  • Electrodes
  • Enzymes, Immobilized / chemistry
  • Enzymes, Immobilized / metabolism*
  • Fungi / chemistry
  • Fungi / enzymology*
  • Humans
  • Models, Molecular
  • Nanostructures / chemistry
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism

Substances

  • Enzymes, Immobilized
  • Recombinant Proteins
  • Carbohydrate Dehydrogenases
  • cellobiose-quinone oxidoreductase