Unprecedented transformation of tetrathienoanthracene into pentacene on Ni(111)

ACS Nano. 2013 Feb 26;7(2):1652-7. doi: 10.1021/nn305572s. Epub 2013 Jan 24.

Abstract

The imaging and characterization of single-molecule reaction events is essential to both extending our basic understanding of chemistry and applying this understanding to challenges at the frontiers of technology, for example, in nanoelectronics. Specifically, understanding the behavior of individual molecules can elucidate processes critical to the controlled synthesis of materials for applications in multiple nanoscale technologies. Here, we report the synthesis of an important semiconducting organic molecule through an unprecedented reaction observed with submolecular resolution by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Our images reveal a sulfur abstraction and cyclization reaction that converts tetrathienoanthracene precursors into pentacene on the Ni(111) surface. The identity of the final reaction product was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This reaction has no known literature analogue, and highlights the power of local-probe techniques for exploring new chemical pathways.

Publication types

  • Research Support, Non-U.S. Gov't