Synthesis and structural characterization of heteroboroxines with MB2O3 core (M = Sb, Bi, Sn)

Inorg Chem. 2013 Feb 4;52(3):1424-31. doi: 10.1021/ic302153s. Epub 2013 Jan 17.

Abstract

Reaction of organoantimony and organobismuth oxides (LSbO)(2) and (LBiO)(2) (where L is [2,6-bis(dimethylamino)methyl]phenyl) with four equivalents of the organoboronic acids gave new heteroboroxines LM[(OBR)(2)O] 1a-2c (for M = Sb: R = Ph (1a), 4-CF(3)C(6)H(4) (1b), ferrocenyl (1c); for M = Bi: R = Ph (2a), 4-CF(3)C(6)H(4) (2b), and ferrocenyl (2c)). Analogously, reaction between organotin carbonate L(Ph)Sn(CO(3)) and two equivalents of organoboronic acids yielded compounds L(Ph)Sn[(OBR)(2)O] (where R = Ph (3a), 4-CF(3)C(6)H(4) (3b), and ferrocenyl (3c)). All compounds were characterized by elemental analysis and NMR spectroscopy. Their structure was described both in solution (NMR studies) and in the solid state (X-ray diffraction analyses 1a, 1c, 2b, 3b, and 3c). All compounds contain a central MB(2)O(3) core (M = Sb, Bi, Sn), and the bonding situation within these rings and their potential aromaticity was investigated by the help of computational methods.