Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system

Biochim Biophys Acta. 2013 Jul;1834(7):1415-24. doi: 10.1016/j.bbapap.2013.01.004. Epub 2013 Jan 11.

Abstract

Numerous bacteria possess transcription activators and antiterminators composed of regulatory domains phosphorylated by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). These domains, called PTS regulation domains (PRDs), usually contain two conserved histidines as potential phosphorylation sites. While antiterminators possess two PRDs with four phosphorylation sites, transcription activators contain two PRDs plus two regulatory domains resembling PTS components (EIIA and EIIB). The activity of these transcription regulators is controlled by up to five phosphorylations catalyzed by PTS proteins. Phosphorylation by the general PTS components EI and HPr is usually essential for the activity of PRD-containing transcription regulators, whereas phosphorylation by the sugar-specific components EIIA or EIIB lowers their activity. For a specific regulator, for example the Bacillus subtilis mtl operon activator MtlR, the functional phosphorylation sites can be different in other bacteria and consequently the detailed mode of regulation varies. Some of these transcription regulators are also controlled by an interaction with a sugar-specific EIIB PTS component. The EIIBs are frequently fused to the membrane-spanning EIIC and EIIB-mediated membrane sequestration is sometimes crucial for the control of a transcription regulator. This is also true for the Escherichia coli repressor Mlc, which does not contain a PRD but nevertheless interacts with the EIIB domain of the glucose-specific PTS. In addition, some PRD-containing transcription activators interact with a distinct EIIB protein located in the cytoplasm. The phosphorylation state of the EIIB components, which changes in response to the presence or absence of the corresponding carbon source, affects their interaction with transcription regulators. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Binding Sites / genetics
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Gene Expression Regulation, Bacterial
  • Models, Genetic
  • Phosphoenolpyruvate Sugar Phosphotransferase System / genetics
  • Phosphoenolpyruvate Sugar Phosphotransferase System / metabolism*
  • Phosphorylation
  • Protein Binding
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*

Substances

  • Bacterial Proteins
  • Escherichia coli Proteins
  • Mlc protein, E coli
  • Repressor Proteins
  • Trans-Activators
  • Phosphoenolpyruvate Sugar Phosphotransferase System