Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency

J Agric Food Chem. 2013 Jan 30;61(4):939-46. doi: 10.1021/jf303704u. Epub 2013 Jan 17.

Abstract

Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r < 0.3). These results indicate the important contribution of polymeric proanthocyanidins to red wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

MeSH terms

  • Chemical Precipitation
  • Humans
  • Polymers / chemistry*
  • Proanthocyanidins / chemistry*
  • Salivary Proteins and Peptides / chemistry*
  • Taste*
  • Wine / analysis*

Substances

  • Polymers
  • Proanthocyanidins
  • Salivary Proteins and Peptides