A personalized biomechanical model for respiratory motion prediction

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):566-73. doi: 10.1007/978-3-642-33454-2_70.

Abstract

Time-resolved imaging of the thorax or abdominal area is affected by respiratory motion. Nowadays, one-dimensional respiratory surrogates are used to estimate the current state of the lung during its cycle, but with rather poor results. This paper presents a framework to predict the 3D lung motion based on a patient-specific finite element model of respiratory mechanics estimated from two CT images at end of inspiration (EI) and end of expiration (EE). We first segment the lung, thorax and sub-diaphragm organs automatically using a machine-learning algorithm. Then, a biomechanical model of the lung, thorax and sub-diaphragm is employed to compute the 3D respiratory motion. Our model is driven by thoracic pressures, estimated automatically from the EE and EI images using a trust-region approach. Finally, lung motion is predicted by modulating the thoracic pressures. The effectiveness of our approach is evaluated by predicting lung deformation during exhale on five DIR-Lab datasets. Several personalization strategies are tested, showing that an average error of 3.88 +/- 1.54 mm in predicted landmark positions can be achieved. Since our approach is generative, it may constitute a 3D surrogate information for more accurate medical image reconstruction and patient respiratory analysis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Artifacts*
  • Computer Simulation
  • Humans
  • Lung / diagnostic imaging*
  • Lung / physiology*
  • Models, Biological*
  • Motion
  • Radiographic Image Enhancement / methods
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Respiratory Mechanics / physiology*
  • Respiratory-Gated Imaging Techniques / methods*
  • Sensitivity and Specificity