Effects of hypertonic saline on macrophage migration inhibitory factor in traumatic conditions

Exp Ther Med. 2013 Jan;5(1):362-366. doi: 10.3892/etm.2012.800. Epub 2012 Jun 11.

Abstract

Trauma-induced suppression of cellular immune function contributes to sepsis, multiple organ dysfunction syndrome (MODS) and mortality. Macrophage migration inhibitory factor (MIF) has been revealed to be central to several immune responses. However, the role of MIF in trauma-like conditions is unknown. Therefore, the present study evaluated MIF in macrophages and polymorphonuclear neutrophils (PMNs). The effects of hypertonic saline (HTS) on lipopolysaccharide (LPS)-induced MIF levels were evaluated in macrophages. MIF concentrations were determined by an enzyme-linked immnosorbent assay (ELISA) and cell lysates were used for western blot analysis. The effects of HTS on N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced MIF were evaluated in PMNs. MIF concentrations were determined by ELISA, western blotting and real time-polymerase chain reaction (RT-PCR) to determine MIF expression. MIF levels, which were measured by the ELISA, increased by 1.24±0.38 ng/ml in the supernatants of LPS-stimulated macrophages compared with the controls (0.79±0.07 ng/ml) at 2 h. HTS10 (150 mmol/l) partially restored MIF levels (0.84±0.22 ng/ml; P<0.05). Also, western blotting was performed and MIF protein levels were higher in the LPS-stimulated macrphages (20% increase in band density) compared with the controls (P<0.05). The addition of HTS decreased MIF protein expression. MIF levels in fMLP-stimulated PMN cells were unchanged compared with the controls according to the ELISA, western blotting and RT-PCR. No effects were observed following treatment with HTS. MIF concentrations and MIF expression were higher in LPS-stimulated macrophages than controls and HTS restored MIF levels to those of the controls. MIF levels were unchanged in PMNs stimulated by fMLP.