Recovery from rat sciatic nerve injury in vivo through the use of differentiated MDSCs in vitro

Exp Ther Med. 2013 Jan;5(1):193-196. doi: 10.3892/etm.2012.785. Epub 2012 Oct 31.

Abstract

In this study, muscle-derived stem cells (MDSCs) whose differentiation into neuron-like cells was induced by ciliary neurotrophic factor (CNTF) and Salvia (Salvia miltiorrhiza) in vitro were used to repair rat sciatic nerve injuries in vivo, in order to investigate their multifunctional characteristics as pluripotent stem cells. The sciatic nerve in the right side of the lower limb was exposed under the anesthetized condition of 10% chloral hydrate (0.3 ml/100 g) injection into the abdominal cavity. The tissue which was 0.5 cm above the sciatic nerve bifurcation was broken using a hemostat. After induction, MDSCs were transferred in sodium hyaluronate gel and were placed into the damaged area. An untreated control group was also included in this study. The surgical area was sutured after washing with gentamycin sulfate solution. Sciatic nerve function index (SFI) was calculated, electrophysiological tests were performed and the recovery rate of gastrocnemius muscle wet weight was also calculated. Four weeks post-surgery, the SFI and the recovery rate of gastrocnemius muscle wet weight in the MDSC group were significantly higher than those in the control group (P<0.05). MDSCs whose differentiation is induced by CNTF and Salvia play an active role in the repair of peripheral nerve injury.