Porosity of pillared clays studied by hyperpolarized 129Xe NMR spectroscopy and Xe adsorption isotherms

Langmuir. 2013 Jan 15;29(2):643-52. doi: 10.1021/la304502r. Epub 2013 Jan 3.

Abstract

The influence of the layer charge on the microstructure was studied for a series of three hybrid pillared interlayered clays based on the organic dication Me(2)DABCO(2+) and charge reduced synthetic fluorohectorites. To get a detailed picture of the local arrangements within the interlayer space, multinuclear solid-state NMR spectroscopy was performed in conjunction with high-resolution (129)Xe MAS NMR, temperature-dependent wide-line 1D and 2D (129)Xe NMR, and Ar/Ar(l) and Xe/Xe(l) physisorption measurements. The resulting layer charge (x) for the three samples are 0.48, 0.44, and 0.39 per formula unit (pfu). The samples exhibit BET equivalent surfaces between 150 and 220 m(2)/g and pore volumes which increase from 0.06 to 0.11 cm(3)/g while the layer charge reduces. 1D and 2D (1)H, (13)C, (19)F, and (29)Si MAS data reveal that the postsynthetic charge reduction induces regions with higher defect concentrations within the silicate layers. Although the pillars tend to avoid these defect-rich regions, a homogeneous and regular spacing of the Me(2)DABCO(2+) pillars is established. Both the Ar/Ar(l) physisorption and (129)Xe NMR measurements reveal comparable pore dimensions. The trend of the temperature-dependent wide-line (129)Xe spectra as well as the exchange in the EXSY spectra is typical for a narrow 2D pore system. (129)Xe high-resolution experiments allow for a detailed description of the microstructure. For x = 0.48 a bimodal distribution with pore diameters between 5.9 and 6.4 Å is observed. Reducing the layer charge leads to a more homogeneous pore structure with a mean diameter of 6.6 Å (x = 0.39). The adsorption enthalpies ΔH(ads) determined from the temperature-dependent (129)Xe chemical shift data fit well to the ones derived from the Xe/Xe(l) physisorption measurements in the high-pressure limit while the magnitude of ΔH(ads) in the low-pressure limit is significantly larger. Thus, the (129)Xe data are influenced by adsorbate-adsorbent as well as adsorbate-adsorbate interactions.