Thermal sensitivity predicts the establishment success of nonnative species in a mesocosm warming experiment

Ecology. 2012 Nov;93(11):2313-20. doi: 10.1890/12-0609.1.

Abstract

While climate change is likely to modify biological interactions between species, it is not clear how altered biotic interactions will influence specific processes such as community assembly. We show that small increases in water temperature can alter the establishment success of the nonnative, tropical zooplankton species, Daphnia lumholtzi, and suggest a general framework for understanding species establishment in the context of climate change. We compared the establishment success of D. lumholtzi and the native congener D. pulex in a mesocosm experiment manipulating temperature, food conditions, and the identity of the resident vs. establishing species. To understand if our mesocosm results could have been predicted by thermal physiology, we characterized the thermal sensitivity of each species' population growth rate and estimated the temperatures at which each species would outperform the other. As predicted by the thermal sensitivities, invading D. lumholtzi were able to establish regardless of temperature and food resources, and established more rapidly in heated mesocosms. Invading D. pulex reached higher initial abundances in ambient-temperature mesocosms but failed to establish in any heated mesocosms. These findings suggest that thermal sensitivity may predict how altered interactions between species can influence community assembly, and that higher lake temperatures will likely aid the future establishment of nonnative D. lumholtzi in North America.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Animals
  • Daphnia / physiology*
  • Ecosystem
  • Food
  • Hot Temperature*
  • Introduced Species*
  • Time Factors