Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries

Nanoscale. 2013 Jan 21;5(2):780-7. doi: 10.1039/c2nr32758a. Epub 2012 Dec 12.

Abstract

Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO(4) except that Li ions in C-LiFePO(4) are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO(4) cathode in sodium-ion (Na-ion) batteries and C-LiFePO(4) in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO(4) are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO(4) cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO(4) cathodes, the rate performance of C-NaFePO(4) in Na-ion batteries is much worse than that of C-LiFePO(4) in Li-ion batteries. However, the cycling stability of C-NaFePO(4) is almost comparable to C-LiFePO(4) by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.