Histamine-induced changes in rat tracheal goblet cell mucin store and mucosal edema

Histochem Cell Biol. 2013 May;139(5):717-26. doi: 10.1007/s00418-012-1060-y. Epub 2012 Dec 7.

Abstract

The pathology of chronic asthma in human and mouse is characterized by inflammation and remodeling of airway tissues. As a result of repeated inflammatory insults to the lower airways, smooth muscle thickening, mucin secretion and airway hyperreactivity may develop. In ovalbumin (OVA)-sensitized mice with repeated challenges with OVA to the lower airways, the trachea and bronchi are characterized by goblet cell hyperplasia and mucus hypersecretion from goblet cells. Previous study reports that intravenous (i.v.) application of a high dose of capsaicin releases tachykinin from capsaicin-sensitive nerves, producing acute plasma leakage and mucosal edema formation and causing depletion of mucin granules in goblet cells that results in a reduction in the number and size of Alcian blue (AB)-positive goblet cells in the rat trachea within a few minute after capsaicin application. Histamine is an important non-neural mediator of asthma from mast cells. The present study investigated whether i.v. application of a high dose of histamine (18 μmol/ml/kg) could result in these acute changes and the similar time-course changes in rat trachea. The tracheal whole mounts stained with chloroacetate esterase reagent and AB and tracheal methacrylate sections stained with AB and periodic acid-Schiff reagent were used for evaluation of histological and cellular changes. At 5 min after histamine application, mucosal leaky venules were numerous and subepithelial edema ratio (% of length of edema along the mucosal epithelial circumference of tracheal cross section) was found to be 48.2 ± 4.9, which was greater (P < 0.01) than saline-treated rats. But, the number of AB-positive goblet cells, 2,030 ± 170/mm(2) of mucosal surface epithelium, was similar to saline-treated group (P > 0.05). One day later, edema ratio remained large and the number of AB-positive goblet cells was 1,140 ± 150/mm(2) epithelium, reduced to half the number of the group at 5 min after histamine (P < 0.01). It is suggested that mucus hypersecretion occurred at this time point. At 3 or 5 days after histamine, edema ratio gradually decreased. The number of AB-positive goblet cells continued to remain small on day 3. On day 5 after histamine, the number of AB-positive goblet cells restored to the level of rat group at 5 min after histamine application. At 7 days after histamine, edema ratio returned to the level of saline-treated group. It is concluded that degranulation and thinning of tracheal goblet cells and mucus hypersecretion lagged behind histamine-induced acute plasma leakage and edema, and restoration of mucin store in goblet cells was associated with remission of mucosal edema.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dose-Response Relationship, Drug
  • Edema / chemically induced*
  • Edema / pathology
  • Female
  • Histamine / administration & dosage
  • Histamine / pharmacology*
  • Injections, Intraperitoneal
  • Male
  • Mucins / metabolism*
  • Nasal Mucosa / drug effects*
  • Nasal Mucosa / pathology*
  • Rats
  • Rats, Sprague-Dawley
  • Trachea / drug effects*
  • Trachea / metabolism*

Substances

  • Mucins
  • Histamine