A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island--the case of Boka Bartol (Bonaire, Leeward Antilles)

Naturwissenschaften. 2013 Jan;100(1):51-67. doi: 10.1007/s00114-012-0993-2. Epub 2012 Dec 8.

Abstract

The Caribbean is highly vulnerable to coastal hazards. Based on their short recurrence intervals over the intra-American seas, high-category tropical cyclones and their associated effects of elevated storm surge, heavy wave impacts, mudslides and floods represent the most serious threat. Given the abundance of historical accounts and trigger mechanisms (strike-slip motion and oblique collision at the northern and southern Caribbean plate boundaries, submarine and coastal landslides, volcanism), tsunamis must be considered as well. This paper presents interdisciplinary multi-proxy investigations of sediment cores (grain size distribution, carbonate content, loss-on-ignition, magnetic susceptibility, microfauna, macrofauna) from Washington-Slagbaai National Park, NW Bonaire (Leeward Antilles). No historical tsunami is recorded for this island. However, an allochthonous marine layer found in all cores at Boka Bartol reveals several sedimentary criteria typically linked with tsunami deposits. Calibrated (14)C data from these cores point to a palaeotsunami with a maximum age of 3,300 years. Alternative explanations for the creation of this layer, such as inland flooding during tropical cyclones, cannot entirely be ruled out, though in recent times even the strongest of these events on Bonaire did not deposit significant amounts of sediment onshore. The setting of Boka Bartol changed from an open mangrove-fringed embayment into a poly- to hyperhaline lagoon due to the establishment or closure of a barrier of coral rubble during or subsequent to the inferred event. The timing of the event is supported by further sedimentary evidence from other lagoonal and alluvial archives on Bonaire.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Radioisotopes / analysis
  • Ecosystem*
  • Geologic Sediments / analysis*
  • Invertebrates / ultrastructure
  • Microscopy, Electron, Scanning
  • Tsunamis*
  • West Indies

Substances

  • Carbon Radioisotopes