Pest control experiments show benefits of complexity at landscape and local scales

Ecol Appl. 2012 Oct;22(7):1936-48. doi: 10.1890/11-1844.1.

Abstract

Farms benefit from pest control services provided by nature, but management of these services requires an understanding of how habitat complexity within and around the farm impacts the relationship between agricultural pests and their enemies. Using cage experiments, this study measures the effect of habitat complexity across scales on pest suppression of the cabbage aphid Brevicoryne brassicae in broccoli. Our results reveal that proportional reduction of pest density increases with complexity both at the landscape scale (measured by natural habitat cover in the 1 km around the farm) and at the local scale (plant diversity). While high local complexity can compensate for low complexity at landscape scales and vice versa, a delay in natural enemy arrival to locally complex sites in simple landscapes may compromise the enemies' ability to provide adequate control. Local complexity in simplified landscapes may only provide adequate top-down pest control in cooler microclimates with relatively low aphid colonization rates. Even so, strong natural enemy function can be overwhelmed by high rates of pest reproduction or colonization from nearby source habitat.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture
  • Animals
  • Aphids / physiology*
  • Brassica / parasitology
  • California
  • Ecosystem*
  • Environmental Monitoring
  • Insect Control / methods*
  • Pest Control, Biological*
  • Time Factors