Aggregation effects in visible-light flavin photocatalysts: synthesis, structure, and catalytic activity of 10-arylflavins

Chemistry. 2013 Jan 14;19(3):1066-75. doi: 10.1002/chem.201202488. Epub 2012 Nov 29.

Abstract

A series of 10-arylflavins (10-phenyl-, 10-(2',6'-dimethylphenyl)-, 10-(2',6'-diethylphenyl)-, 10-(2',6'-diisopropylphenyl)-, 10-(2'-tert-butylphenyl)-, and 10-(2',6'-dimethylphenyl)-3-methylisoalloxazine (2 a-f)) was prepared as potentially nonaggregating flavin photocatalysts. The investigation of their structures in the crystalline phase combined with (1)H-DOSY NMR spectroscopic experiments in CD(3)CN, CD(3)CN/D(2)O (1:1), and D(2)O confirm the decreased ability of 10-arylflavins 2 to form aggregates relative to tetra-O-acetyl riboflavin (1). 10-Arylflavins 2 a-d do not interact by π-π interactions, which are restricted by the 10-phenyl ring oriented perpendicularly to the isoalloxazine skeleton. On the other hand, N3-H⋅⋅⋅O hydrogen bonds were detected in their crystal structures. In the structure of 10-aryl-3-methylflavin (2 f) with a substituted N3 position, weak C-H⋅⋅⋅O bonds and weak π-π interactions were found. 10-Arylflavins 2 were tested as photoredox catalysts for the aerial oxidation of 4-methoxybenzyl alcohol to the corresponding aldehyde (model reaction), thus showing higher efficiency relative to 1. The quantum yields of 4-methoxybenzyl alcohol oxidation reactions mediated by arylflavins 2 were higher by almost one order of magnitude relative to values in the presence of 1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Crystallography, X-Ray
  • Flavins / chemical synthesis*
  • Flavins / chemistry*
  • Light*
  • Models, Molecular
  • Molecular Structure
  • Photochemical Processes

Substances

  • Flavins