Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever

Nanotechnology. 2012 Dec 14;23(49):495302. doi: 10.1088/0957-4484/23/49/495302. Epub 2012 Nov 13.

Abstract

We report a wear-resistant ultrananocrystalline (UNCD) diamond tip integrated onto a heated atomic force microscope (AFM) cantilever and UNCD tips integrated into arrays of heated AFM cantilevers. The UNCD tips are batch-fabricated and have apex radii of approximately 10 nm and heights up to 7 μm. The solid-state heater can reach temperatures above 600 °C and is also a resistive temperature sensor. The tips were shown to be wear resistant throughout 1.2 m of scanning on a single-crystal silicon grating at a force of 200 nN and a speed of 10 μm s(-1). Under the same conditions, a silicon tip was completely blunted. We demonstrate the use of these heated cantilevers for thermal imaging in both contact mode and intermittent contact mode, with a vertical imaging resolution of 1.9 nm. The potential application to nanolithography was also demonstrated, as the tip wrote hundreds of polyethylene nanostructures.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods
  • Diamond / chemistry*
  • Equipment Design
  • Equipment Failure Analysis
  • Heating / instrumentation*
  • Materials Testing
  • Microscopy, Atomic Force / instrumentation*
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure
  • Nanotechnology / instrumentation*
  • Systems Integration
  • Transducers*

Substances

  • Diamond