Syntheses, structures, and magnetic properties of a novel mer-[(bbp)Fe(III)(CN)3](2-) building block (bbp: bis(2-benzimidazolyl)pyridine dianion) and its related heterobimetallic Fe(III)-Ni(II) complexes

Inorg Chem. 2012 Nov 19;51(22):12350-9. doi: 10.1021/ic301661x. Epub 2012 Nov 7.

Abstract

A new symmetrical tricyanide building block mer-[Fe(bbp)(CN)3](2-) [1; bbp = bis(2-benzimidazolyl)pyridine dianion] has been prepared and structurally and magnetically characterized. It forms a new low-spin meridionally capped {Fe(III)L(CN)3} fragment with the tridentate bbp ligand. The reaction of 1 with Ni(II) salts in the presence of various ancillary ligands affords several new cyanido-bridged complexes: a trinuclear complex {[Ni(ntb)(MeOH)]2[Fe(bbp)(CN)3][ClO4]2}·2MeOH (2), a tetranuclear compound {[Ni(tren)]2[Fe(bbp)(CN)3]2}·7MeOH (3), and a one-dimensional heterobimetallic system: {[Ni(dpd)2]2[Fe(bbp)(CN)3]2}·9MeOH·3H2O (4) [ntb = tris(2-benzimidazolylmethyl)amine, tren = tris(2-aminoethyl)amine, and dpd = 2,2-dimethyl-1,3-propanediamine]. The structural data shows that 2 is a linear complex in which a central Fe(III) ion links two adjacent Ni(II) ions via axial cyanides, while 3 is a molecular square that contains cyanido-bridged Ni(II) and Fe(III) ions at alternate corners. Complex 4 is a one-dimensional system that is composed of alternating cyanido-bridged Ni(II) and Fe(III) centers. Compounds 2-4 display extensive hydrogen bonding and moderately strong π-π stacking interactions in the solid state. Magnetic studies show that ferromagnetic exchange is operative within the Fe(III)LS(μ-CN)Ni(II) units of 2-4.