Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana

J Integr Plant Biol. 2013 Mar;55(3):277-89. doi: 10.1111/jipb.12004. Epub 2013 Feb 14.

Abstract

Hydrogen sulfide (H2 S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years, but its function in stomatal movement is unclear. In plants, H2 S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes). AtD-/L-CDes::GUS transgenic Arabidopsis thaliana (L.) Heynh. plants were generated and used to investigate gene expression patterns, and results showed that AtD-/L-CDes can be expressed in guard cells. We also determined the subcellular localization of AtD-/L-CDes using transgenic plants of AtD-/L-CDes::GFP, and the results showed that AtD-CDes and AtL-CDes are located in the chloroplast and in the cytoplasm, respectively. The transcript levels of AtD-CDes and AtL-CDes were affected by the chemicals that cause stomatal closure. Among these factors, ACC, a precursor of ethylene, has the most significant effect, which indicates that the H2 S generated from D-/L-CDes may play an important role in ethylene-induced stomatal closure. Meanwhile, H2 S synthetic inhibitors significantly inhibited ethylene-induced stomatal closure in Arabidopsis. Ethylene treatment caused an increase of H2 S production and of AtD-/L-CDes activity in Arabidopsis leaves. AtD-/L-CDes over-expressing plants exhibited enhanced induction of stomatal closure compared to the wild-type after ethylene treatment; however, the effect was not observed in the Atd-cdes and Atl-cdes mutants. In conclusion, our results suggest that the D-/L-CDes-generated H2 S is involved in the regulation of ethylene-induced stomatal closure in Arabidopsis thaliana.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / drug effects*
  • Arabidopsis / physiology
  • Ethylenes / pharmacology*
  • Hydrogen Sulfide / pharmacology*
  • Plant Stomata / drug effects*
  • Plant Stomata / physiology

Substances

  • Ethylenes
  • ethylene
  • Hydrogen Sulfide