Beaming into the rat world: enabling real-time interaction between rat and human each at their own scale

PLoS One. 2012;7(10):e48331. doi: 10.1371/journal.pone.0048331. Epub 2012 Oct 31.

Abstract

Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human's movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Interpersonal Relations
  • Movement
  • Rats
  • Robotics
  • Time Factors
  • Virtual Reality Exposure Therapy / instrumentation*

Grants and funding

This study was funded by the European Commission through the European Union projects PRESENCCIA FP6-027731, IMMERSENCE FP6-027141 BEAMING FP7-248620, MicroNanoTeleHaptics (ERC 247401) and TRAVERSE (ERC 227985). European FP6 and FP7 projects' URL is http://cordis.europa.eu/home_en.html and the European Research Council's is http://erc.europa.eu/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.