A wireless magnetic resonance energy transfer system for micro implantable medical sensors

Sensors (Basel). 2012;12(8):10292-308. doi: 10.3390/s120810292. Epub 2012 Jul 30.

Abstract

Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm(3).

Keywords: CMOS rectifier; Class-E amplifier; LDO; micro-implantable medical sensors; transfer efficiency; wireless energy transfer system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Equipment Design
  • Magnetic Resonance Spectroscopy / instrumentation*
  • Models, Theoretical
  • Prostheses and Implants*
  • Signal Processing, Computer-Assisted / instrumentation*
  • Telemedicine / instrumentation*
  • Telemetry / instrumentation*