Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling

Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):E3177-85. doi: 10.1073/pnas.1213797109. Epub 2012 Oct 29.

Abstract

Neutrophil recruitment into the joint is a hallmark of inflammatory arthritides, including rheumatoid arthritis (RA). In a mouse model of autoantibody-induced inflammatory arthritis, neutrophils infiltrate the joint via multiple chemoattractant receptors, including the leukotriene B(4) (LTB(4)) receptor BLT1 and the chemokine receptors CCR1 and CXCR2. Once in the joint, neutrophils perpetuate their own recruitment by releasing LTB(4) and IL-1β, presumably after activation by immune complexes deposited on joint structures. Two pathways by which immune complexes may activate neutrophils include complement fixation, resulting in the generation of C5a, and direct engagement of Fcγ receptors (FcγRs). Previous investigations showed that this model of autoantibody-induced arthritis requires the C5a receptor C5aR and FcγRs, but the simultaneous necessity for both pathways was not understood. Here we show that C5aR and FcγRs work in sequence to initiate and sustain neutrophil recruitment in vivo. Specifically, C5aR activation of neutrophils is required for LTB(4) release and early neutrophil recruitment into the joint, whereas FcγR engagement upon neutrophils induces IL-1β release and subsequent neutrophil-active chemokine production, ensuring continued inflammation. These findings support the concept that immune complex-mediated leukocyte activation is not composed of overlapping and redundant pathways, but that each element serves a distinct and critical function in vivo, culminating in tissue inflammation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthritis, Experimental / chemically induced
  • Arthritis, Experimental / genetics
  • Arthritis, Experimental / immunology*
  • Arthritis, Experimental / pathology
  • Autoantibodies / adverse effects
  • Autoantibodies / pharmacology
  • Chemokines / genetics
  • Chemokines / immunology
  • Complement C5a / genetics
  • Complement C5a / immunology
  • Interleukin-1beta / genetics
  • Interleukin-1beta / immunology
  • Joints / immunology
  • Joints / pathology
  • Leukotriene B4 / genetics
  • Leukotriene B4 / immunology
  • Mice
  • Mice, Knockout
  • Neutrophil Infiltration / genetics
  • Neutrophil Infiltration / immunology*
  • Neutrophils / immunology*
  • Neutrophils / pathology
  • Receptor, Anaphylatoxin C5a / genetics
  • Receptor, Anaphylatoxin C5a / immunology*
  • Receptors, CCR1 / genetics
  • Receptors, CCR1 / immunology
  • Receptors, IgG / genetics
  • Receptors, IgG / immunology*
  • Receptors, Interleukin-8B / genetics
  • Receptors, Interleukin-8B / immunology
  • Receptors, Leukotriene B4 / genetics
  • Receptors, Leukotriene B4 / immunology
  • Signal Transduction / genetics
  • Signal Transduction / immunology*

Substances

  • Autoantibodies
  • Ccr1 protein, mouse
  • Chemokines
  • Interleukin-1beta
  • Ltb4r1 protein, mouse
  • Receptor, Anaphylatoxin C5a
  • Receptors, CCR1
  • Receptors, IgG
  • Receptors, Interleukin-8B
  • Receptors, Leukotriene B4
  • Leukotriene B4
  • Complement C5a