Electrophoresis and dielectric dispersion of spherical polyelectrolyte brushes

Langmuir. 2012 Nov 27;28(47):16372-81. doi: 10.1021/la302483e. Epub 2012 Nov 13.

Abstract

Spherical polyelectrolyte brushes (SPBs) consist of a rigid core on which polyelectrolyte chains are grafted in such a way that in certain conditions (low ionic strength and high charge of the chains) the polymer chains extend radially toward the liquid medium. Because of the hairy-like structure of the polymer brushes, the typical soft-particle approach used for explaining the behavior of polyelectrolyte-coated particles must be modified, using the assumptions that the density of charged segments in the polymer chains decreases with the squared distance to the rigid core surface and that the same happens to the friction between the brushes and the surrounding fluid. Interest in clarifying the electrokinetics of these systems is not just academic. It has recently been found experimentally (Jiménez et al., Soft Matter 2011, 7, 3758-3762) that the response of concentrated suspensions of spherical polyelectrolyte brushes in the presence of alternating electric fields shows a number of unexpected features. Both dielectric and dynamic electrophoretic mobility spectra (respectively, dependences of the electric permittivity and the AC electrophoretic mobility on the frequency of the applied field) showed very special aspects, with giant values of the mobility and an unusually strong dielectric relaxation in the kHz region. In the present paper we give a full account of the electrodynamics of such systems, based on a cell model for describing the hydrodynamic and electrical interactions between the particles. It is found that the low-frequency dynamic mobility of SPBs is much higher than that of rigid particles of comparable size and charge, making any interpretation based on zeta potential estimations of very limited applicability. The very characteristic feature of SPBs in concentrated suspensions, namely, the enhanced alpha relaxation, can be explained by considering an adequate description of the field-induced perturbations in the counterion and co-ion concentrations, well developed both outside and inside the soft layer in the case of brush-coated particles. It can be also pointed out that the dynamic electrophoretic mobility of SPBs increases with the volume fraction of particles, as a consequence of the large thickness of the brush. Predictions are also shown for the effects of friction coefficient and charge of the polyelectrolyte layer. The results compare well with experimental spectra of the dynamic mobility and electric permittivity of moderately concentrated suspensions of SPBs consisting of a 50 nm polystyrene core with grafted poly(styrene sulfonate) chains some 140 nm in length.