Peripheral blood invariant natural killer T cells of pig-tailed macaques

PLoS One. 2012;7(10):e48166. doi: 10.1371/journal.pone.0048166. Epub 2012 Oct 23.

Abstract

In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet(+) CD3(+) iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24(+)CD3(+) cells are α-GalCer-CD1d-Tet(+)CD3(+) iNKT cells, which primarily consist of either the CD4(+) or CD8(+) subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8(+)iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / metabolism
  • CD8-Positive T-Lymphocytes / metabolism
  • Flow Cytometry
  • Interferon-gamma / metabolism
  • Leukocytes, Mononuclear / metabolism
  • Macaca / immunology*
  • Natural Killer T-Cells / metabolism*
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Tumor Necrosis Factor-alpha
  • Interferon-gamma