A New C-Xyloside induces modifications of GAG expression, structure and functional properties

PLoS One. 2012;7(10):e47933. doi: 10.1371/journal.pone.0047933. Epub 2012 Oct 26.

Abstract

Proteoglycans (PGs) are critically involved in major cellular processes. Most PG activities are due to the large interactive properties of their glycosaminoglycan (GAG) polysaccharide chains, whose expression and fine structural features are tightly controlled by a complex and highly regulated biosynthesis machinery. Xylosides are known to bypass PG-associated GAG biosynthesis and prime the assembly of free polysaccharide chains. These are, therefore, attractive molecules to interfere with GAG expression and function. Recently, we have developed a new xyloside derivative, C-Xyloside, that shares classical GAG-inducing xyloside activities while exhibiting improved metabolic stability. We have previously shown that C-Xyloside had beneficial effects on skin homoeostasis/regeneration using a number of models, but its precise effects on GAG expression and fine structure remained to be addressed. In this study, we have therefore investigated this in details, using a reconstructed dermal tissue as model. Our results first confirmed that C-Xyloside strongly enhanced synthesis of GAG chains, but also induced significant changes in their structure. C-Xyloside primed GAGs were exclusively chondroitin/dermatan sulfate (CS/DS) that featured reduced chain size, increased O-sulfation, and changes in iduronate content and distribution. Surprisingly, C-Xyloside also affected PG-borne GAGs, the main difference being observed in CS/DS 4-O/6-O-sulfation ratio. Such changes were found to affect the biological properties of CS/DS, as revealed by the significant reduction in binding to Hepatocyte Growth Factor observed upon C-Xyloside treatment. Overall, this study provides new insights into the effect of C-Xyloside on GAG structure and activities, which opens up perspectives and applications of such compound in skin repair/regeneration. It also provides a new illustration about the use of xylosides as tools for modifying GAG fine structure/function relationships.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chondroitin
  • Chromatography, Gel
  • Dermatan Sulfate
  • Dermis / metabolism*
  • Gene Expression Regulation / drug effects*
  • Glycosaminoglycans / biosynthesis
  • Glycosaminoglycans / isolation & purification
  • Glycosaminoglycans / metabolism*
  • Glycosides / metabolism
  • Glycosides / pharmacology*
  • Hepatocyte Growth Factor / metabolism
  • Humans
  • Scintillation Counting
  • Tritium

Substances

  • C-xylopyranoside-2-hydroxypropane
  • Glycosaminoglycans
  • Glycosides
  • Tritium
  • Dermatan Sulfate
  • Hepatocyte Growth Factor
  • Chondroitin

Grants and funding

This study was funded by L’Oreal research and innovation, and has been performed on the basis of a scientific collaboration. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.