H/D isotopic and temperature effects in the polarized IR spectra of hydrogen-bond cyclic trimers in the crystal lattices of acetone oxime and 3,5-dimethylpyrazole

J Phys Chem A. 2012 Nov 29;116(47):11553-67. doi: 10.1021/jp308375z. Epub 2012 Nov 8.

Abstract

Polarized IR spectra of hydrogen-bonded acetone oxime and 3,5-dimethylpyrazole crystals were measured at 293 and 77 K in the ν(X-H) and ν(X-D) band frequency ranges. These crystals contain molecular trimers in their lattices. The individual crystal spectral properties remain in a close relation with the electronic structure of the two different molecular systems. We show that a vibronic coupling mechanism involving the hydrogen-bond protons and the electrons on the π-electronic systems in the molecules determines the way in which the vibrational exciton coupling between the hydrogen bonds in the trimers occurs. A strong coupling in 3,5-dimethylpyrazole trimers prefers a "tail-to-head"-type Davydov coupling widespread via the π-electrons. A weak through-space exciton coupling in acetone oxime trimers involves three adjacent hydrogen bonds in each cycle. The relative contribution of each exciton coupling mechanism in the trimer spectra generation is temperature and the molecular electronic structure-dependent. This explains the observed difference in the temperature-induced evolution of the compared spectra. The mechanism of the H/D isotopic "self-organization" processes in the crystal hydrogen bonds was also analyzed. The two types of the hydrogen-bond trimers exhibit the same way, in which the H/D isotopic recognition mechanism occurs. In acetone oxime and 3,5-dimethylpyrazole trimers, identical hydrogen isotope atoms exist in these entire hydrogen-bond systems.