Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres--a review

J Control Release. 2013 Jan 10;165(1):29-37. doi: 10.1016/j.jconrel.2012.10.015. Epub 2012 Oct 26.

Abstract

PLGA microspheres are widely studied for controlled release drug delivery applications, and many models have been proposed to describe PLGA degradation and erosion and drug release from the bulk polymer. Autocatalysis is known to have a complex role in the dynamics of PLGA erosion and drug transport and can lead to size-dependent heterogeneities in otherwise uniformly bulk-eroding polymer microspheres. The aim of this review is to highlight mechanistic, mathematical models for drug release from PLGA microspheres that specifically address interactions between phenomena generally attributed to autocatalytic hydrolysis and mass transfer limitation effects. Predictions of drug release profiles by mechanistic models are useful for understanding mechanisms and designing drug release particles.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Drug Delivery Systems*
  • Lactic Acid / chemistry*
  • Microspheres
  • Models, Theoretical*
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer

Substances

  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid