Size of cell-surface Kv2.1 domains is governed by growth fluctuations

Biophys J. 2012 Oct 17;103(8):1727-34. doi: 10.1016/j.bpj.2012.09.013. Epub 2012 Oct 16.

Abstract

The Kv2.1 voltage-gated potassium channel forms stable clusters on the surface of different mammalian cells. Even though these cell-surface structures have been observed for almost a decade, little is known about the mechanism by which cells maintain them. We measure the distribution of domain sizes to study the kinetics of their growth. Using a Fokker-Planck formalism, we find no evidence for a feedback mechanism present to maintain specific domain radii. Instead, the size of Kv2.1 clusters is consistent with a model where domain size is established by fluctuations in the trafficking machinery. These results are further validated using likelihood and Akaike weights to select the best model for the kinetics of domain growth consistent with our experimental data.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Membrane / chemistry
  • HEK293 Cells
  • Humans
  • Models, Theoretical
  • Protein Structure, Tertiary
  • Protein Transport
  • Shab Potassium Channels / chemistry
  • Shab Potassium Channels / metabolism*

Substances

  • Shab Potassium Channels