Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro

Tissue Eng Part A. 2013 Apr;19(7-8):849-59. doi: 10.1089/ten.TEA.2012.0374. Epub 2012 Dec 13.

Abstract

Myocardial tissue engineering is one of the most promising treatment strategies to restore heart function after a massive heart attack. The biomaterials, cells, and scaffold design play important roles in engineering of heart tissue. In this study, we have developed a fibrin-based multiscale electrospun composite scaffold for myocardial regeneration. Fibrin is the natural wound-healing matrix having angiogenic potential and comprehensively used for tissue engineering applications. It provides a natural environment for cell attachment, migration, and proliferation. Morphological, chemical, and mechanical characterization of the scaffolds was done by scanning electron microscopy, fibrin-specific phosphotungstic acid hematoxylin staining, and mechanical testing. The fiber diameters of fibrin nanofibers range from 50 to 300 nm and that of poly (lactide-co-glycolide) microfibers range from 2 to 4 μm, which mimics the structural hierarchy of native myocardial tissue. Our results indicate that this scaffold enhances the differentiation of mesenchymal stem cells into cardiomyocytes. The cardiac phenotype of the cells was confirmed by the presence of cardiac-specific proteins like α-sarcomeric actinin, troponin, tropomyosin, desmin, and atrial natriuretic peptide Estimation of D-Dimer in the culture supernatant for 2 weeks and analysis of scaffold for 3 weeks of in vitro culture of cardiomyocytes indicated the degradation of fibrin and presence of newly synthesized collagen respectively. Our results demonstrate the promising potential of this scaffold for myocardial tissue engineering applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Adhesion / drug effects
  • Cell Differentiation / drug effects
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Cell Survival / drug effects
  • DNA / metabolism
  • Extracellular Matrix / drug effects
  • Extracellular Matrix / metabolism
  • Fibrin / pharmacology
  • Fibrin Fibrinogen Degradation Products / metabolism
  • Flow Cytometry
  • Humans
  • Lactic Acid / chemistry
  • Lactic Acid / pharmacology*
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / ultrastructure
  • Microscopy, Electron, Scanning
  • Myocardium / metabolism*
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / drug effects
  • Polyglycolic Acid / chemistry
  • Polyglycolic Acid / pharmacology*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Regeneration / drug effects*
  • Tensile Strength / drug effects
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Fibrin Fibrinogen Degradation Products
  • fibrin fragment D
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Fibrin
  • DNA