Uniform temperature dependency in the phenology of a keystone herbivore in lakes of the Northern Hemisphere

PLoS One. 2012;7(10):e45497. doi: 10.1371/journal.pone.0045497. Epub 2012 Oct 5.

Abstract

Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r(2) = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R(2) = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach--based on temperature phenologies--has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Climate
  • Daphnia / physiology*
  • Ecosystem*
  • Germany
  • Herbivory
  • Lakes*
  • Models, Biological
  • Seasons
  • Temperature*
  • Washington

Grants and funding

The authors acknowledge the support from several sources for maintaining the long-term data sets of Lakes Constance (University of Konstanz, Deutsche Forschungsgemeinshaft: Special Collaborative Programme 248), Washington (the Mellon Foundation and the City of Seattle) and Müggelsee (the Leibniz-Institute of Freshwater Ecology and Inland Fisheries). Financial support for the present study was given by the Deutsche Forschungsgemeinschaft (project PE 701/2-1 within the AQUASHIFT programme, SPP 1162). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.