Particle-level engineering of thermal conductivity in matrix-embedded semiconductor nanocrystals

Nano Lett. 2012 Nov 14;12(11):5797-801. doi: 10.1021/nl303109r. Epub 2012 Oct 19.

Abstract

Known manipulations of semiconductor thermal transport properties rely upon higher-order material organization. Here, using time-resolved optical signatures of phonon transport, we demonstrate a "bottom-up" means of controlling thermal outflow in matrix-embedded semiconductor nanocrystals. Growth of an electronically noninteracting ZnS shell on a CdSe core modifies thermalization times by an amount proportional to the overall particle radius. Using this approach, we obtain changes in effective thermal conductivity of up to 5× for a nearly constant energy gap.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cadmium Compounds / chemistry
  • Diffusion
  • Hot Temperature
  • Nanoparticles / chemistry*
  • Nanotechnology / methods*
  • Particle Size
  • Phonons
  • Quantum Dots*
  • Selenium Compounds / chemistry
  • Semiconductors*
  • Spectrophotometry / methods
  • Sulfides / chemistry
  • Temperature
  • Thermal Conductivity
  • Zinc Compounds / chemistry

Substances

  • Cadmium Compounds
  • Selenium Compounds
  • Sulfides
  • Zinc Compounds
  • cadmium selenide
  • zinc sulfide