Antiferromagnetic interactions in 1D Heisenberg linear chains of 7-(4-fluorophenyl) and 7-phenyl-substituted 1,3-diphenyl-1,4-dihydro-1,2,4-benzotriazin-4-yl radicals

Chemistry. 2012 Nov 26;18(48):15433-8. doi: 10.1002/chem.201202784. Epub 2012 Oct 12.

Abstract

7-(4-Fluorophenyl) and 7-phenyl-substituted 1,3-diphenyl-1,4-dihydro-1,2,4-benzotriazin-4-yl radicals were characterized by X-ray diffraction analysis and variable-temperature magnetic susceptibility studies. The radicals pack in 1D π stacks of equally spaced slipped radicals with interplanar distances of 3.59 and 3.67 Å and longitudinal angles of 40.97 and 43.47°, respectively. Magnetic-susceptibility studies showed that both radicals exhibit antiferromagnetic interactions. Fitting the magnetic data revealed that the behavior is consistent with 1D regular linear antiferromagnetic chain with J=-12.9 cm(-1), zJ'=-0.4 cm(-1), g=2.0069 and J=-11.8 cm(-1), zJ'=-6.5 cm(-1), g=2.0071, respectively. Magnetic-exchange interactions in benzotriazinyl radicals are sensitive to the degree of slippage, and inter-radical separation and subtle changes in structure alter the fine balance between ferro- and antiferromagnetic interactions.