Impact of the CTLA-4/CD28 axis on the processes of joint inflammation in rheumatoid arthritis

Arthritis Rheum. 2013 Jan;65(1):81-7. doi: 10.1002/art.37714.

Abstract

Objective: The importance of the costimulatory molecules CD28 and CTLA-4 in the pathologic mechanism of rheumatoid arthritis (RA) has been demonstrated by genetic associations and the successful clinical application of CTLA-4Ig for the treatment of RA. This study was undertaken to investigate the role of the CTLA-4/CD28 axis in the local application of CTLA-4Ig in the synovial fluid (SF) of RA patients.

Methods: Quantitative polymerase chain reaction was used to analyze the expression of proinflammatory and antiinflammatory cytokines in ex vivo fluorescence-activated cell sorted CTLA-4+ and CTLA-4- T helper cells from the peripheral blood and SF of RA patients. T helper cells were also analyzed for cytokine expression in vitro after the blockade of CTLA-4 by anti-CTLA-4 Fab fragments or of B7 (CD80/CD86) molecules by CTLA-4Ig.

Results: CTLA-4+ T helper cells were unambiguously present in the SF of all RA patients examined, and they expressed increased amounts of interferon-γ (IFNγ), interleukin-17 (IL-17), and IL-10 as compared to CTLA-4- T helper cells. The selective blockade of CTLA-4 in T helper cells from the SF in vitro led to increased levels of IFNγ, IL-2, and IL-17. The concomitant blockade of CD28 and CTLA-4 in T helper cells from RA SF by CTLA-4Ig in vitro resulted in reduced levels of the proinflammatory cytokines IFNγ and IL-2 and increased levels of the antiinflammatory cytokines IL-10 and transforming growth factor β.

Conclusion: Our ex vivo and in vitro results demonstrate that the CTLA-4/CD28 axis constitutes a drug target for not only the systemic, but potentially also the local, application of the costimulation blocking agent CTLA-4Ig for the treatment of RA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arthritis, Rheumatoid / drug therapy
  • Arthritis, Rheumatoid / immunology*
  • Arthritis, Rheumatoid / pathology
  • CD28 Antigens / immunology*
  • CTLA-4 Antigen / immunology*
  • Cytokines / metabolism*
  • Flow Cytometry
  • Humans
  • Molecular Targeted Therapy
  • Real-Time Polymerase Chain Reaction
  • Synovial Fluid / immunology*
  • Synovial Fluid / metabolism

Substances

  • CD28 Antigens
  • CTLA-4 Antigen
  • Cytokines