Local contextual interactions can result in global shape misperception

J Vis. 2012 Oct 3;12(11):3. doi: 10.1167/12.11.3. Print 2012.

Abstract

Adaptation in the visual system frequently results in properties of subsequently presented stimuli being repelled along identifiable axes. Adaptation to radial frequency (RF) patterns, patterns deformed from circular by a sinusoidal modulation of radius, results in a circle taking on the appearance of having modulation in opposite phase. Here we used paths of spatially localized gratings (Gabor patches) to examine the role of local orientation adaptation in this shape aftereffect. By applying the tilt aftereffect (TAE) as a function of the local orientation difference between adaptor and test, concomitant with adjustment of local position to accommodate the orientation change and preserve path continuity (Euler's method), we show that a TAE field can account for this misperception of shape. Spatial modulation is also observed spontaneously in a circular path of Gabor patches when the local patch orientations are rotated from tangential to the path. This illusory path modulation is consistent with the path orientation being attracted to the orientation of the patches. This consistent local rule implies a local explanation for the global effect and is consistent with a known illusion with a local cause, the Fraser illusion (FI). A similar analysis to that used for the TAE shows that the Fraser illusion can account for this particular alteration of perceived shape. A model which proposes that local orientations are encoded after considering the activation in a population of neurons with differing orientation tuning can accommodate both effects. It is proposed that these distinct processes rely on the same neural architecture.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / physiology*
  • Contrast Sensitivity*
  • Figural Aftereffect / physiology*
  • Humans
  • Illusions*
  • Orientation / physiology*
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation / methods
  • Space Perception / physiology*