Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome

PLoS One. 2012;7(9):e45693. doi: 10.1371/journal.pone.0045693. Epub 2012 Sep 19.

Abstract

Metabolic syndrome (MS) represents a cluster of physiological and anthropometric abnormalities. The purpose of this study was to investigate the relationships between the levels of inflammation, adiponectin, and oxidative stress in subjects with MS. The inclusion criteria for MS, according to the Taiwan Bureau of Health Promotion, Department of Health, were applied to the case group (n = 72). The control group (n = 105) comprised healthy individuals with normal blood biochemical values. The levels of inflammatory markers [high sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6), adiponectin, an oxidative stress marker (malondialdehyde), and antioxidant enzymes activities [catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)] were measured. Subjects with MS had significantly higher concentrations of inflammatory markers and lower adiponectin level, and lower antioxidant enzymes activities than the control subjects. The levels of inflammatory markers and adiponectin were significantly correlated with the components of MS. The level of hs-CRP was significantly correlated with the oxidative stress marker. The IL-6 level was significantly correlated with the SOD and GPx activities, and the adiponectin level was significantly correlated with the GPx activity. A higher level of hs-CRP (≥1.00 mg/L), or IL-6 (≥1.50 pg/mL) or a lower level of adiponectin (<7.90 µg/mL) were associated with a significantly greater risk of MS. In conclusion, subjects suffering from MS may have a higher inflammation status and a higher level of oxidative stress. A higher inflammation status was significantly correlated with decreases in the levels of antioxidant enzymes and adiponectin and an increase in the risk of MS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adiponectin / blood*
  • Biomarkers / blood
  • Humans
  • Inflammation / blood*
  • Metabolic Syndrome / blood*
  • Metabolic Syndrome / physiopathology
  • Oxidative Stress*

Substances

  • Adiponectin
  • Biomarkers

Grants and funding

This study was supported by a grant from the National Science Council (NSC 99-2320-B-040-011) of Taiwan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.