Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors

Nanoscale. 2012 Nov 7;4(21):6806-13. doi: 10.1039/c2nr31883k. Epub 2012 Sep 26.

Abstract

Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Monoxide / analysis*
  • Electrochemical Techniques*
  • Electrodes
  • Gels / chemistry
  • Hydrogen / analysis*
  • Metal Nanoparticles / chemistry*
  • Nanostructures / chemistry
  • Oxides / chemistry*
  • Temperature
  • Tin Compounds / chemistry*

Substances

  • Gels
  • Oxides
  • Tin Compounds
  • Carbon Monoxide
  • Hydrogen
  • stannic oxide