The biologically effective dose in inhalation nanotoxicology

Acc Chem Res. 2013 Mar 19;46(3):723-32. doi: 10.1021/ar300092y. Epub 2012 Sep 24.

Abstract

In all branches of toxicology, the biologically effective dose (BED) is the fraction of the total dose of a toxin that actually drives any toxic effect. Knowledge of the BED has a number of applications including in building structure-activity relationships, the selection of metrics, the design of safe particles, and the determination of when a nanoparticle (NP) can be considered to be "new" for regulatory purposes. In particle toxicology, we define the BED as "the entity within any dose of particles in tissue that drives a critical pathophysiogically relevant form of toxicity (e.g., oxidative stress, inflammation, genotoxicity, or proliferation) or a process that leads to it." In conventional chemical toxicology, researchers generally use the mass as the metric to describe dose (such as mass per unit tissue or cells in culture) because of its convenience. Concentration, calculated from mass, may also figure in any description of dose. In the case of a nanoparticle dose, researchers use either the mass or the surface area. The mass of nanoparticles is not the only driver of their activity: the surfaces of insoluble particles interact with biological systems, and soluble nanoparticles can release factors that interact with these systems. Nanoparticle shape can modify activity. In this Account, we describe the current knowledge of the BED as it pertains to different NP types. Soluble toxins released by NPs represent one potential indicator of BED for wholly or partially soluble NPs composed of copper or zinc. Rapid dissolution of these NPs into their toxic ions in the acidic environment of the macrophage phagolysosome causes those ions to accumulate, which leads to lysosome destabilization and inflammation. In contrast, soluble NPs that release low toxicity ions, such as magnesium oxide NPs, are not inflammogenic. For insoluble NPs, ζ potential can serve as a BED measurement because the exposure of the particle surface to the acidic milieu of the phagolysosome and interactions with the lysosomal membrane can compromise the integrity of the NPs. Researchers have explored oxidative potential of NPs most extensively as an indicator of the BED: the ability of an NP to cause oxidative stress in cells is a key factor in determining cell toxicity, inflammogenicity, and oxidative DNA adduct formation. Finally we discuss BEDs for high aspect ratio nanoparticles because long fibers or nanoplatelets can cause inflammation and further effects. These consequences arise from the paradoxically small aerodynamic diameter of fibers or thin platelets. As a result, these NPs can deposit beyond the ciliated airways where their extended dimensions prevent them from being fully phagocytosed by macrophages, leading to frustrated phagocytosis. Although knowledge is accumulating on the BED for NPs, many questions and challenges remain in understanding and utilizing this important nanotoxicological parameter.

MeSH terms

  • Administration, Inhalation
  • Dose-Response Relationship, Drug
  • Humans
  • Macrophages / drug effects*
  • Nanoparticles / toxicity*
  • Particle Size
  • Structure-Activity Relationship